#

Dailypharm Live Search Close
  • AI-driven Drug Discovery is already signigicantly high level
  • by Kim, Jin-Gu | translator Choi HeeYoung | 2019-11-18 16:47:54
AI is used clinical trials including Drugs Pipeline discovery & verification, the key point is Data
Prof. Kang, Jaewoo, Dept. of Computer Science and Engineering, Korea University, introduced the case at 'BIOplus 2019'

Global pharmaceutical companies are showing great interest in the development of new drugs using artificial intelligence (AI).

 

It is expected that AI will drastically reduce the time and costs associated with finding a candidate substance through clinical trials and approvals before entering the market.

 

What about the perspective of the computer science industry, not the pharmaceutical industry?

 

Prof.

 

Kang, Jaewoo, Dept.

 

of Computer Science and Engineering, Korea University, explained that AI-driven Drug Discovery is already coming to reality at 'BIOplus 2019' held at COEX in Seoul on Nov 12.

 

Prof.

 

Kang presented as a speaker at a session called ''AI Medicine: Data-driven Drug Discovery.

 

He expects AI to be particularly strong in clinical trials including Drugs Pipeline discovery & verification.

 

In addition, he introduced cases of this and added his experience of winning the global competition continuesly, According to him, the most prominent step in AI development is Drugs Pipeline discovery.

 

At present, the discovery of candidate materials is mainly done by manual method through document retrieval like Pub Med, the world's largest medical thesis site, reads related articles and formulates hypotheses.

 

However, the number of new articles published in Pub Med is 5000 conservatives a day.

 

It is impossible for a person to check one by one.

 

AI can contribute to this, Professor Kang explained.

 

He focused on AI's "human language learning ability." He succeeded in creating a program called 'BioBERT' last January based on Google's 'deep learning' technology.

 

AI ​​will answer it.

 

if you enter the medical question you want in the program.

 

It is an expansion of the pharmaceutical bio sector of 'BERT' which Google disclosed earlier.

 

Google learned Wikipedia's language with deep learning and created a program called BERT.

 

Data was entered as Wikipedia's language.

 

Instead of Wikipedia, BioBERT learned the language of Pub Med and PMC (another medical article search site).

 

16 billion words were entered as data.

 

BioBERT's capabilities have been recognized globally.

 

He won first place in BioASQ, one of the AI ​​bio competitions in the pharmaceutical bio sector.

 

Google was in second place.

 

It came with Google's model and reborn as a better program than Google.

 

He said,“It was a test to see how accurate the program would answer, and we can significantly reduce time and effort to find candidates (via BioBERT)." Next step is to verify it once you formulate a hypothesis.

 

Prof.

 

Kang also explained that AI contributes a lot.

 

He added real experience.

 

It was a competition called 'IDG-DREEM' this year.

 

When professors at Mount Sinai Medical School in New York presented their hypothesis as a problem, AI experts around the world searched for answers.

 

Professor Kang won the championship for two consecutive years.

 

He became a co-winner this year.

 

It is in the same position as Illinois State University, China National University of China, and North Carolina State University.

 

The problem was that 'find ZINC15 (Pharmaceutical Bio-Sector Compound DB)' to determine what is most effective when combined with certain drugs in thyroid cancer.

 

In the case of drugs with different structures and similar mechanisms, Prof.

 

Kang's group trained machine learning models to recognize as similar drugs.

 

As a result, It was successful to find 10 substances.

 

Seven of these substances were also confirmed to have related papers.

 

AI could also help with clinical trials, Pro.

 

Kang predicted.

 

"We can predict which patients will be particularly effective for which patients or for which biomarkers," he said.

 

In 2016, AstraZeneca held a contest with Sanger.

 

After revealing the patient's genetic information and the effects of the drug, the problem was predicting which cancer would be most effective.

 

Prof.

 

Kang said that more data is required than the previous stage of finding and verifying candidates.

 

Even though it was the latest professional computer at that time, it took over 20 hours to solve a problem on its own.

 

Eventually, 20 more computers were purchased and the processing speed was increased by 20 times and then reduced to 1 hour.

 

Prof.

 

Kang's group, who first entered the competition, placed second .

 

The following year, he was ranked No.

 

1 in a competition hosted by the National Cancer Institute (NCI) in 2017.

 

"In 2016 and 2017, we were able to succeed because we used the good quality of patient information that was organized in advance by the organizer." "It is very important to reine data for AI and Even in the field, quality & quantity of information is very important.“

"AI also learns from data… the more the better" In the subsequent presentation, the importance of the data was emphasized.

 

Ph.D Shin, Hyun-jin, who is in charge of AI drug development at Takeda Pharmaceuticals, said, "I feel like I'm floating in the ocean.

 

It's water everywhere but there's no water to drink." There is a lot of data, but no useful data available.

 

"In order for machine learning to evolve, standardized data must be available.

 

However, different data formats are difficult to use these days.“ “Dissemination is the most important to win the war in the long run”he said.

 

"It is same as AI drug development.

 

Both the quantity and quality of the data is important.

 

lower quality may result in lower accuracy, while lower quantities may result in biased results“ He emphasized.

 

  • 0
Reader Comment
0
Member comment Write Operate Rule
Colse

댓글 운영방식은

댓글은 실명게재와 익명게재 방식이 있으며, 실명은 이름과 아이디가 노출됩니다. 익명은 필명으로 등록 가능하며, 대댓글은 익명으로 등록 가능합니다.

댓글 노출방식은

댓글 명예자문위원(팜-코니언-필기모양 아이콘)으로 위촉된 데일리팜 회원의 댓글은 ‘게시판형 보기’와 ’펼쳐보기형’ 리스트에서 항상 최상단에 노출됩니다. 새로운 댓글을 올리는 일반회원은 ‘게시판형’과 ‘펼쳐보기형’ 모두 팜코니언 회원이 쓴 댓글의 하단에 실시간 노출됩니다.

댓글의 삭제 기준은

다음의 경우 사전 통보없이 삭제하고 아이디 이용정지 또는 영구 가입제한이 될 수도 있습니다.

  • 저작권·인격권 등 타인의 권리를 침해하는 경우

    상용 프로그램의 등록과 게재, 배포를 안내하는 게시물

    타인 또는 제3자의 저작권 및 기타 권리를 침해한 내용을 담은 게시물

  • 근거 없는 비방·명예를 훼손하는 게시물

    특정 이용자 및 개인에 대한 인신 공격적인 내용의 글 및 직접적인 욕설이 사용된 경우

    특정 지역 및 종교간의 감정대립을 조장하는 내용

    사실 확인이 안된 소문을 유포 시키는 경우

    욕설과 비어, 속어를 담은 내용

    정당법 및 공직선거법, 관계 법령에 저촉되는 경우(선관위 요청 시 즉시 삭제)

    특정 지역이나 단체를 비하하는 경우

    특정인의 명예를 훼손하여 해당인이 삭제를 요청하는 경우

    특정인의 개인정보(주민등록번호, 전화, 상세주소 등)를 무단으로 게시하는 경우

    타인의 ID 혹은 닉네임을 도용하는 경우

  • 게시판 특성상 제한되는 내용

    서비스 주제와 맞지 않는 내용의 글을 게재한 경우

    동일 내용의 연속 게재 및 여러 기사에 중복 게재한 경우

    부분적으로 변경하여 반복 게재하는 경우도 포함

    제목과 관련 없는 내용의 게시물, 제목과 본문이 무관한 경우

    돈벌기 및 직·간접 상업적 목적의 내용이 포함된 게시물

    게시물 읽기 유도 등을 위해 내용과 무관한 제목을 사용한 경우

  • 수사기관 등의 공식적인 요청이 있는 경우

  • 기타사항

    각 서비스의 필요성에 따라 미리 공지한 경우

    기타 법률에 저촉되는 정보 게재를 목적으로 할 경우

    기타 원만한 운영을 위해 운영자가 필요하다고 판단되는 내용

  • 사실 관계 확인 후 삭제

    저작권자로부터 허락받지 않은 내용을 무단 게재, 복제, 배포하는 경우

    타인의 초상권을 침해하거나 개인정보를 유출하는 경우

    당사에 제공한 이용자의 정보가 허위인 경우 (타인의 ID, 비밀번호 도용 등)

  • ※이상의 내용중 일부 사항에 적용될 경우 이용약관 및 관련 법률에 의해 제재를 받으실 수도 있으며, 민·형사상 처벌을 받을 수도 있습니다.

    ※위에 명시되지 않은 내용이더라도 불법적인 내용으로 판단되거나 데일리팜 서비스에 바람직하지 않다고 판단되는 경우는 선 조치 이후 본 관리 기준을 수정 공시하겠습니다.

    ※기타 문의 사항은 데일리팜 운영자에게 연락주십시오. 메일 주소는 dailypharm@dailypharm.com입니다.

If you want to see the full article, please JOIN US (click)